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Definition 1 

Euler line is the line that passes through the following three distinguished points in a triangle: the 

orthocenter, the circumcenter, and the centroid of the triangle. 

Definition 2 

The intersection of the three altitudes in a triangle is called the orthocenter of the triangle. The center of 

the circle circumscribed about a triangle is called the circumcenter of the triangle. The intersection of the 

three medians in a triangle is called the centroid (or the medicenter) of the triangle. 

Definition 3 

The midpoints of the segments joining the orthocenter of a triangle to its vertices are called the Euler 

points of the triangle. The three Euler points determines the Euler triangle of the given triangle. 

Theorem 1 

The orthocenter H, circumcenter O, and centroid M of a triangle are always collinear, with point M 

between H and O, twice as close to O as to H, i.e.,  𝑀𝐻  =  2 𝑀𝑂 . The line 𝑂𝑀𝐻 is called Euler's line. 

Theorem 2 

 If 𝑂 and 𝐼 are the circumcenter and incenter of 𝐴𝐵𝐶, then 𝑂𝐼2 = 𝑅(𝑅 − 2𝑟), where R and r are 

respectively the circumradius and the inradius of 𝐴𝐶. Consequently, 𝑅 ≥ 2𝑟. 

Theorem 3 

The incenter of a triangle lies on the Euler line exactly when the triangle is isosceles. In such a case, the 

Euler line is the altitude (also simultaneously, median, perpendicular bisector, and angle bisector) 

towards the base of the isosceles triangle. 

Definition 4 

The nine-point circle of a triangle is the circle passing through the following 9 points:  

 3 midpoints of the sides of the triangle, 

 3 feet of the altitudes, 

 3 Euler points. 

The center of this circle is called the nine-point center. 

Theorem 4 

The radius of the nine-point circle is equal to half of the circumradius of the triangle. 

Theorem 5 

The nine-point center lies on the Euler line in the middle between the circumcenter and the orthocenter.  



Problem 1 

The altitudes of △ 𝐴𝐵𝐶 meet at the orthocenter H. 

a) Prove that △ 𝐴𝐵𝐶, △ 𝐻𝐵𝐶, △ 𝐴𝐻𝐶, and △ 𝐴𝐵𝐻 share the same nine-point circle. 

b) Prove that the Euler lines of △ 𝐴𝐵𝐶,△ 𝐻𝐵𝐶,△ 𝐴𝐻𝐶, and △ 𝐴𝐵𝐻 intersect at one point. 

Solution: 

a) Let us prove, that, for example, △ 𝐴𝐵𝐶 and △ 𝐻𝐵𝐶 share the same circle of nine points. Indeed, the 

circle of nine points of these triangles pass through the midpoint of side 𝐵𝐶 and the midpoint of the 

segments 𝐵𝐻 and 𝐶𝐻. 

b) Euler line passes through the center of the circle of nine points and these triangles share one circle of 

nine points. 

 

Problem 2 

Let 𝐺 be the centroid and 𝑂 the circumcenter of △ 𝐴𝐵𝐶. Let 𝑋 be a point on the circumcircle of △ 𝐴𝐵𝐶, and 

𝑋′ the reflection of 𝑋 across 𝑂. 

Prove that 𝑋𝐺 bisects the segment 𝐻𝑋′. 

Solution:  

𝐻𝑂 is median in △ 𝑋𝑋′𝐻, but 𝐻𝐺 = 2𝐺𝑂 (according to Theorem 1), so 𝐺 is centroid of △ 𝑋𝑋′𝐻. Thus 𝑋𝐺 is 

a median of △ 𝑋𝑋′𝐻, and so bisects 𝐻𝑋′. 

 

Problem 3 

Let 𝐻 be the orthocenter of △ 𝐴𝐵𝐶. The feet of altitudes from 𝐴, 𝐵 and 𝐶 respectively are 𝐴1 , 𝐵1 and 𝐶1. Let 

𝑀𝐴  and 𝑀𝐵 be the midpoints of 𝐵𝐶 and 𝐴𝐶, respectively. 

Prove that the line joining the circumcenter of △ 𝐴1𝐵1𝐶 and △ 𝑀𝐴𝑀𝐵𝐶 is parallel to the Euler line of 

△ 𝐴𝐵𝐶. 

Solution: 

 

𝐶𝐴1𝐻𝐵1 and 𝐶𝑀𝐴𝑂𝑀𝐵 are cyclic with < 𝐶𝐴1𝐻 = 90° =< 𝐻𝐵1𝐶 and < 𝐶𝑀𝐴𝑂 = 90° =< 𝑂𝑀𝐵𝐶. Thus 𝐶𝐻 

and 𝐶𝑂 are the respective diameters, and so the circumcenters of △ 𝐴1𝐵1𝐶 and △ 𝑀𝐴𝑀𝐵𝐶 are the 



midpoints of 𝑂𝐻 and 𝐶𝐻, respectively. The line joining these midpoints is a midline in △ 𝐶𝐻𝑂, so it is 

parallel to 𝐻𝑂, the Euler line. 

 

Problem 4 

Let 𝐺 be the centroid of △ 𝐴𝐵𝐶, and let 𝐶1 be the foot of the altitude from 𝐶 to 𝐴𝐵. Let 𝑋 be the 

intersection of the midline of △ 𝐴𝐵𝐶, parallel to 𝐴𝐵, and the perpendicular bisector of 𝐴𝐵. 

Prove that 𝐶1, 𝐺 and 𝑋 are collinear and 𝐶1𝐺 = 2𝐺𝑋. 

 

Solution 1: 

Lets prove that 𝐶1, 𝐺 and 𝑋 is, respectively, the orthocenter, the centroid and the circumcenter of some 

triangle. Let 𝑤 be the circle with center 𝑋 and the radius 𝑋𝐴. Let 𝐵′ and 𝐶′ be the intersections of 𝑤 and the 

perpendicular from 𝑀𝐴  to 𝐴𝐵. 𝑋 lies on the perpendicular bisector of 𝐴𝐵, so 𝐵 lies on 𝑤 and thus 

< 𝐴𝐶′𝐵′ =< 𝐴𝐵𝐵′. But < 𝐴𝐵𝐵′ =< 𝐵′𝐶1𝐵 since 𝐵′  lies on the perpendicular bisector of 𝐵𝐶1. Thus 

< 𝐶1𝐵′𝐶′ = 90°−< 𝐴𝐶′𝐵′, and so 𝐵′𝐶1 is an altitude in △ 𝐴𝐵′𝐶′. But 𝐴𝐶1 is also an altitude, which means 

𝐶1𝐷 is the orthocenter of △ 𝐴𝐵′𝐶′. 

Furthermore, 𝐴𝑀𝐴  is median with 𝐴𝐺 = 2𝐺𝑀𝐴, so 𝐺 is a centroid in △ 𝐴𝐵′𝐶′. Lastly, 𝑋 is the circumcenter, 

and so 𝐶1, 𝐺 and 𝑋 is a Euler triangle of △ 𝐴𝐵′𝐶′. 

Solution 2: 

We have 𝐶𝐶1 = 2𝑋𝑀𝑐  and 𝐶𝐻 = 2𝑂𝑀𝑐 , so 𝐶1𝐻 = 2𝑋𝑂. At the same time, 𝐻𝐺 = 2𝐺𝑂 and < 𝐶1𝐻𝐶 =< 𝑋𝑂𝐺, 

so △ 𝐻𝐹𝐺~ △ 𝑂𝑋𝐺. This implies𝐶1𝐺 and 𝑋 lie on a single line with 𝐶1𝐺 = 2𝐺𝑋. 

 

Problem 5 

Let 𝑂 be the circumcenter of △ 𝐴𝐵𝐶. In △ 𝐴𝐵𝐶, let 𝐴’ be the reflection of 𝑂 over 𝐵𝐶, 𝐵’ be the reflection of 

𝑂 over 𝐴𝐶, and 𝐶’ be the reflection of 𝑂 over 𝐴𝐵. Let 𝐻 be the orthocenter of △ 𝐴𝐵𝐶. Let 𝐺 be the centroid 

of △ 𝐴𝐵𝐶. Let 𝑇 be the midpoint of 𝐻𝐺. 

Prove that the line 𝐴’𝑇 bisects both 𝐵’𝐶’ and 𝐴𝐻 at the same point. 



Solution:  

 

𝑀𝐴𝑀𝐶  is a midline in △ 𝐶′𝐴′𝑂, so 𝐶 ′𝐴′| 𝑀𝐶𝑀𝐴 |𝐴𝐶. Thus 𝐵′𝑂 and, analogically, 𝐶′𝑂 are altitudes in △ 𝐴′𝐵′𝐶′, 

so 𝑂 is the orthocenter. 𝐴𝐻||𝐴′𝑂 and, since △ 𝐴𝐵𝐶 ≅△ 𝐴′𝐵′𝐶′, 𝐴𝐻 = 𝐴′𝑂(both are distances from the 

orthocenter to a corresponding vertex). Thus 𝐴𝑂𝐴′𝐻 is a parallelogram, so 𝑂𝐴 = 𝑅 = 𝐻𝐴′. Analogically, 

𝐻𝐵′ = 𝑅 and 𝐻𝐶′ = 𝑅, so 𝐻 is the circumcenter of  △ 𝐴′𝐵′𝐶′. 

Because of 𝐴𝐵′ = 𝐴𝑂 = 𝑅, 𝐴𝐶′ = 𝐴𝑂 = 𝑅, 𝐵𝐻′ = 𝑅 and 𝐶𝐻′ = 𝑅, 𝐴𝐶′𝑂𝐶 is a parallelogram. This implies 

that 𝐵′𝐶′ and 𝐴𝐻 bisect each other. By Euler theorem, 𝑇 is the centroid of △ 𝐴′𝐵′𝐶′, so 𝐴′𝑇 is a median, and 

so goes through the midpoint of  𝐵’𝐶’ and 𝐴𝐻. 

 

 

  



Functional equations and inequalities

Birgit Veldi

January 26, 2025

1 Some useful definitions

Definition 1. A function f is called odd if for every x in its domain f(−x) = −f(x).

Definition 2. A function f is called even if for every x in its domain f(x) = f(−x).

Definition 3. A function f is called monotone if x ≤ y implies that f(x) ≤ f(y).

2 Some ideas to start with

• Plug things into

• Add/subtract/multiply equations

• Is there symmetry somewhere?

• Does the function have some nice properties?

• Interchange variables

• Try to guess the solution

3 Introduction

Problem 1. (Estonia TST 2018 P4) Find all functions f : R → R such that for all real numbers x
and y the following holds:

f(xy + f(xy)) = 2xf(y)

Problem 2. (Nordic 2022 P1) Find all functions f : R → R such that f(f(x)f(1 − x)) = f(x) and
f(f(x)) = 1− f(x), for all real x.

Problem 3. (Estonia TST 2022 P1) Find all functions f : R → R such that for all real x and y the
following holds

f(x) + f(x+ y) ≤ f(xy) + f(y).

4 Injectivity and surjectivity

Definition 4. Injectivive function. A function f : X → Z is called injective (or one-to-one) if for all
different x, y ∈ X we have f(x) ̸= f(y). In order words, if we have f(x) = f(y), then it follows that
x = y.

Definition 5. Surjective function. A function f : X → Y is called surjective (or onto) if for every
y ∈ Y there exists x ∈ X such that f(x) = y.

Definition 6. Bijective function. A function f is called bijective if it’s both injective and surjetive.

Exercise 1. Show that if f(f(x)) = x for every x, then f is bijective.

Problem 4. (2005 Swiss MO Final Round P9) Find all functions f : R+ → R+ such that for all
x, y > 0

f(yf(x))(x+ y) = x2(f(x) + f(y)).

Problem 5. (Estonia EGMO TST 2025 P7) Does there exist a surjetive function f : R → R such
that

f(f(x)) = (x− 1)f(x) + 2

holds for every real number x?
Remark. Function f is called surjective if for all y ∈ R there exists x ∈ R such that f(x) = y.
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Problem 6. (Nordic P3 2024) Find all functions f : R → R

f(f(x)f(y) + y) = f(x)y + f(y − x+ 1)

For all x, y ∈ R

5 Introducing new functions

Problem 7. (BW 2007 P5) A function f is defined on the set of all real numbers except 0 and takes
all real values except 1. It is also known that

f(xy) = f(x)f(−y)− f(x) + f(y)

for any x, y ̸= 0 and that

f(f(x)) =
1

f( 1x )

for any x ̸∈ {0, 1}. Determine all such functions f .

6 Point-wise trap

What happens if we get an equation like this (f(x)− a)(f(x)− b) = 0?

Problem 8. (Kyrgyzstan 2012 P4) Find all functions f : R → R such that f(f(x)2+f(y)) = xf(x)+y,
for all x, y ∈ R.

Problem 9. (IMO SL 2008 A1) Find all functions f : (0,∞) 7→ (0,∞) (so f is a function from the
positive real numbers) such that

(f(w))
2
+ (f(x))

2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z, satisfying wx = yz.

Problem 10. (MEMO 2021 P1) Find all functions f : R → R such that

f(x2)− f(y2) ≤ (f(x) + y)(x− f(y))

holds for all real x and y.
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EGMO 2025 training camp
Division

Deividas Morkūnas

Introduction
1. If x | a, then there exists an integer n such that a “ xn.

2. If x | a and x | b, then x | a ` b and x | a ´ b and x | ab.

3. If xa | xb, then a | b.

4. If x | y and y | z, then x | z.

5. If x | a and y | b, then xy | ab.

6. If x | a and x | a ` b, then x | b.

7. If x | a and y | a and gcdpx, yq “ 1, then xy | a.

8. If p is a prime and p | ab, then p | a or p | b.

Problems
Problem 1. Prove that for every integer n, 81 ∤ n3 ´ 9n ` 27.

Problem 2. For natural numbers a, bc it holds that pa ` b ` cq2 | abpa ` bq ` bcpb ` cq ` capc ` aq ` 3abc. Prove that

a ` b ` c | pa ´ bq2 ` pb ´ cq2 ` pc ´ aq2

Problem 3. Determine all integers n such that n2 ` 2014 | n4 ` 2014 and n2 ` 2015 | n4 ` 2015.

Problem 4. Let p be a prime number, p ‰ 3 and let a and b be positive integers such that p | a ` b and p2 | a3 ` b3. Show
that p2 | a ` b or p3 | a3 ` b3

Problem 5. Determine all positive integers n such that t
?
nu ´ 1 | n ` 1 and t

?
nu ` 2 | n ` 4.

Problem 6. Let n be a positive integer and let a, b, c, d be integers such that n | a ` b ` c ` d and n | a2 ` b2 ` c2 ` d2.
Show that

n | a4 ` b4 ` c4 ` d4 ` 4abcd.

Problem 7. Find all functions f : Z` ÝÑ Z` such that

fpaq ` b | a2 ` fpaqfpbq

for all positive integers a, b.

Problem 8. Prove that for every natural number n ą 1 there exists a permutation a1,a2, ..., an of the numbers 1, 2, ..., n
such that for each k P t1, 2, ..., n ´ 1u the number ak`1 | a1 ` a2 ` ... ` ak.

Problem 9. Show that there exists infinitely many n such that: 2n ´ 1 | 22
n

´ 1

Problem 10. Find all functions f : Z` ÝÑ Z` such that

n ` fpmq | fpnq ` nfpmq

for all m,n P Z`

Problem 11. Find all triples px, y, zq of positive integers, with z ą 1, such that x | y ` 1, y | z ´ 1 and z | x2 ` 1.

Problem 12. Find all polynomials with integer coefficients, P pnq such that P pnq | 2n ´ 1 for all positive integers n.

https://artofproblemsolving.com/community/c1068820h2935509p26269454
https://artofproblemsolving.com/community/c6h2024087p14240151
https://www4352.vu.lt/matematikos-olimpiados/wp-content/uploads/2015/11/2015LMO.pdf
https://artofproblemsolving.com/community/c6h2024087p14240151
https://artofproblemsolving.com/community/c6h2935981p26273974
https://www.math.olympiaadid.ut.ee/eng/archive/bw/bw16sol.pdf
https://artofproblemsolving.com/community/c6h1854148p12519631
https://artofproblemsolving.com/community/c6h3397247p32676824
https://artofproblemsolving.com/community/c6h3200746p29225793
https://artofproblemsolving.com/community/c6h1441693p8209540
https://www.rsme.es/wp-content/uploads/2022/04/sol2022.pdf
https://artofproblemsolving.com/community/c6h1993392p13900620


Games

Greta Morkūnė, EGMO training camp

2025.01.27

Problem 1. Let n be a positive integer and M = {1, 2, 3, 4, 5, 6}. A starts with any digit from M . Then B appends to it
a digit from M , and so on, until they get a number with 2n digits. If the result is a multiple of 9, then B wins; otherwise A
wins. Who wins, depending on n?

Problem 2. Start with two piles of p and q chips, respectively. A and B move alternately. A move consists in taking a chip
from any pile, taking a chip from each pile, or moving a chip from one pile to the other. The winner is the one to take the
last chip. Who wins, depending on the initial conditions?

Problem 3. The number N is the product of k different primes (k ≥ 3). A and B take turns writing composite divisors of
N on a board, according to the following rules. One may not write N . Also, there may never appear two coprime numbers or
two numbers, one of which divides the other. The first player unable to move loses. If A starts, who has the winning strategy?

Problem 4. Alice and Bob play a game on a 6 by 6 grid. On his or her turn, a player chooses a rational number not yet
appearing on the grid and writes it in an empty square of the grid. Alice goes first, and then the players alternate. When all
squares have numbers written in them, in each row, the square with the greatest number in that row is colored black. Alice
wins if she can then draw a line from the top of the grid to the bottom of the grid that stays in black squares, and Bob wins
if she can’t. (If two squares share a vertex, Alice can draw a line from one to the other that stays in those two squares.) Find,
with proof, a winning strategy for one of the players.

Problem 5. The SOS Game is played on a 1 × 2000 grid as follows. Two players in turn write either an S or an O in
an empty square. The first player who produces three consecutive boxes that spell SOS wins. If all boxes are filled without
producing SOS then the game is a draw. Prove that the second player has a winning strategy.

Problem 6. Alice and Bob play the following game. First, Alice writes a permutation of the numbers from 1 to n, where
n is some fixed positive integer such that n > 1. In each player’s turn, he or she must write a sequence of numbers that has
not been written yet such that either:

• The sequence is a permutation of the sequence written by the previous player, or

• The sequence is obtained by deleting one number from the previous player’s sequence.

The player who cannot write down a sequence loses. Determine who has a winning strategy.

Problem 7. For positive integers t, a, b, a (t, a, b)-game is a two player game defined by the following rules. Initially, the
number t is written on a blackboard. At his first move, the 1st player replaces t with either t − a or t − b. Then, the 2nd
player subtracts either a or b from this number, and writes the result on the blackboard, erasing the old number. After this,
the first player once again subtracts either a or b from the number written on the blackboard, and so on. The player who
first reaches a negative number loses the game. Prove that there exist infinitely many values of t for which the first player
has a winning strategy for all pairs (a, b) with a+ b = 2005.

Problem 8. Let k ≥ 2 Alice and Bob play the following game. To start, Alice arranges the numbers 1, 2, . . . , n in some
order in a row and then Bob chooses one of the numbers and places a pebble on it. A player’s turn consists of picking up and
placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number k at most k
times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each
positive integer n, determine who has a winning strategy.

Problem 9. Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and
her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of
water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring
buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal’s is to make one
of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

Problem 10. A and B play a game, given an integer N , A writes down 1 first, then every player sees the last number
written and if it is n then in his turn he writes n+1 or 2n, but his number cannot be bigger than N . The player who writes
N wins. For which values of N does B win?
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https://kheavan.wordpress.com/wp-content/uploads/2011/10/mathematical-olympiads-1997-1998-problems-solutions-from-around-the-world-maa-problem-book-225p-b002kypabi.pdf
https://artofproblemsolving.com/community/c6h5393p17438
https://artofproblemsolving.com/community/c6h54505p340040
https://artofproblemsolving.com/community/c341246h1362613_combinatorics_22_italy_tst_2009?srsltid=AfmBOorUqi1MMgkZVlsLlw_EuswA7z6LtI5uCNrDSZjKsuToeYW_V7Ay
https://artofproblemsolving.com/community/c6h37235p233036
https://artofproblemsolving.com/community/c6h419591p2369449
https://artofproblemsolving.com/community/c6h355786p1932930
https://artofproblemsolving.com/community/c6h40197p251895


Numbers modulo p, arithmetic functions, induction

Aleksei Ganyukov

January 27, 2025

1 Theory

Unless stated otherwise, we denote by n a natural number, or, equivalently, positive integer, N = Z+ = {1, 2, 3, . . . },
and by p a prime number, P = {2, 3, 5, 7, 11, . . . }. We know that every n ≥ 2 can be expressed in a unique way in
the form pk1

1 . . . pkm
m .

Definition 1.1. (Division and congruences) We say integer a divides b and write a | b if there exists an integer c
such that b = a · c. We say two integers a, b are congruent modulo positive integer n and write a ≡ b (mod n) if
these numbers give the same remainder upon division by n, that is, n | a− b.

For example, 45 | 2025, 0 | 0, 1 | −1, 2025 ≡ 0 (mod 45), 2026 ≡ 1 (mod 45), 2028 · 2023 ≡ −6 (mod 45).

Observation 1.2. If a | b, then either b = 0 or |a| ≤ |b|.

Theorem 1.3. (Wilson’s theorem) Let p be a prime, then (p− 1)! ≡ −1 (mod p). For example, 7 | 6! + 1.

Theorem 1.4. (Fermat’s little theorem, FLT) Let p be a prime and let a be a positive integer coprime to p (we
write gcd(a, p) = 1 or (a, p) = 1), then ap−1 ≡ 1 (mod p) (or p | ap−1 − 1). Consequently, p | a(p−1)k − 1 for k ∈ N.

Definition 1.5. It’s easy to check that if (a, p) > 1, then there’s no k ∈ N with ak ≡ 1 (mod p). For (a, p) = 1,
we call k ∈ N the order of a modulo p and write k = ordp(a) if k is the least positive integer for which ak ≡ 1.

For example, ord37(10) = 3, ord13(2025) = ord13(10) = 6. By FLT, 1036 ≡ 1 (mod 37), 202512 ≡ 1 (mod 13).

Proposition 1.6. an ≡ 1 (mod p) ⇒ ordp(a) | n. In particular, for (a, p) = 1, ordp(a) | p− 1.

Definition 1.7. Let p be a prime and let n be a positive integer. We denote by vp(n) the largest k ∈ N for which
pk | n. In this case we also write pk||n or pk | n& pk+1 ̸| n. For example, v2(3072) = 10, v37(75!) = 2.

Exercise 1.1. Find in how many zeroes the number 150! ends by evaluating vp(150!) for some p | 10.

Exercise 1.2. Positive integers a, b satisfy the chain of divisibilities a | b2 | a3 | b4 | . . . . Show that a = b.

Theorem 1.8. (LTE lemma) For an odd prime p, assume p | x− y, p ̸| x, y. Then vp(x
n − yn) = vp(x− y)+ vp(n).

For example, p | x
p − yp

x− y
(if the stated conditions hold!). Lemma also covers vp(x

n + yn) and v2(x
n ± yn).

Exercise 1.3. (Estonia TST 2023) Let p ∈ P, x, y ∈ Z. Find x0yp−1 + x1yp−2 + · · ·+ xp−2y1 + xp−1y0 (mod p).

In addition to the theory above, one could extend FLT from the prime case p to any n ∈ N with the help of the
Euler function φ(n), obtaining Euler’s theorem. Other useful results include Chinese remainder theorem (CRT),
Bertrand’s postulate and many others. Below we shortly list the common arithmetic functions.

Definition 1.9. For a positive integer n, denote by d(n), σ(n) the count and the sum of the positive divisors of n,
respectively. Denote by φ(n) the count of positive integers a ≤ n with (a, n) = 1.

When n = pk for some k ∈ N, d(n) = k+1, σ(n) = 1+ · · ·+pk = pk+1−1
p−1 and φ(n) = pk−1(p−1) = pk ·

(
1− 1

p

)
.

Observation 1.10. d(n) is odd ⇔ n is a perfect square. If n and σ(n) are odd, then n is a perfect square. For
n ≥ 3, φ(n) is even.

Theorem 1.11. (Bézout’s lemma) Let a, b be positive integers and let d = (a, b) be their greatest common factor.
Then there exist integers x, y such that ax+ by = d.

Theorem 1.12. (Mihăilescu) The only solution of xa − yb = 1 for a, b > 1 and x, y > 0 is (x, a, y, b) = (3, 2, 2, 3).

1



2 Problems

1. (APMO 1998) Show that there doesn’t exist positive integers a, b such that (36a+ b)(36b+ a) is a power of two.

2. Prove that σ(n− 1)σ(n)σ(n+ 1) is even for all n ≥ 2.

3. Let a, b, n be positive integers with n ≥ 2. Show that σ(n)a = nb is not possible.

4.

a) Prove that there exist 100 distinct positive integers a1, a2, . . . , a100 such that ai divides the total sum s =
a1 + a2 + · · ·+ a100 for each i = 1, . . . , 100.

b) Prove that there exist 99 distinct positive integers b1, . . . , b99 such that the sum of their cubes is a cube.

5. An integer larger than 1 is written on the board. Each move consists of substituting the number n on the board
with the number n+ n

p , where p is any prime divisor of n.

a) (Estonia,Ukraine 2021) Prove that as this process continues, 3 is chosen as p infinitely many times.

b) (Swiss 2022) Now assume the prime p chosen at each step is the smallest possible. Prove that after a finite
number of moves a multiple of 32025 will appear.

6. (IZhO 2020) Let p be a prime such that for any a, b ∈ N the number 2a3b + 1 is not divisible by p. Prove that
for any c, d ∈ N the number 2c + 3d is also not divisible by p.

7.

a) Prove that if n | 2n − 1, then n = 1. Hint: use ordm(2)

b) Let k ≥ 2 and let n1, . . . , nk be positive integers such that n1 | 2n2 − 1, n2 | 2n3 − 1, . . . , nk | 2n1 − 1. Prove
that n1 = n2 = · · · = nk = 1.

8.

a) Let n > 1 be an integer. Prove that for each d | n! with d ̸= n! there exists d′ | n! such that d+ d′ | n!.

b) (IOM 2018) Let 1 = d0 < d1 < · · · < dm = 4n be all positive divisors of 4n, where n is a positive integer.
Prove that there exists i ∈ {1, . . . ,m} such that di − di−1 = 2.

9. (Peru 2009) Let a, b, c be positive integers with gcd(a, b, c) = 1. Prove that there exists n ∈ N such that
ak + bk + ck is not divisible by 2n for all k ∈ N.

10. (IZhO 2021) Prove that there exists a positive integer n, such that the remainder of 3n when divided by 2n is
greater than 102025.

11. (ARO 2018) For n ≥ 3. denote by sn the sum of all primes less than n. Prove that there exists a number
m > 102025 such that (sm,m) = 1.

12. Let n ≥ 2 and let a1, . . . , an be distinct integers.

a) (Ukraine 2023) Call a pair (ai, aj) elegant if the sum ai+aj is a power of 2. Find the largest possible number
of elegant pairs.

b) (EMC 2024) Call a pair (ai, aj) binary if aiaj + 1 is a power of 2. Find the largest possible number of binary
pairs.
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Numbers modulo p, arithmetic functions, induction

Aleksei Ganyukov

January 27, 2025

1 Theory

Unless stated otherwise, we denote by n a natural number, or, equivalently, positive integer, N = Z+ = {1, 2, 3, . . . },
and by p a prime number, P = {2, 3, 5, 7, 11, . . . }. We know that every n ≥ 2 can be expressed in a unique way in
the form pk1

1 . . . pkm
m .

Definition 1.1. (Division and congruences) We say integer a divides b and write a | b if there exists an integer c
such that b = a · c. We say two integers a, b are congruent modulo positive integer n and write a ≡ b (mod n) if
these numbers give the same remainder upon division by n, that is, n | a− b.

For example, 45 | 2025, 0 | 0, 1 | −1, 2025 ≡ 0 (mod 45), 2026 ≡ 1 (mod 45), 2028 · 2023 ≡ −6 (mod 45).

Observation 1.2. If a | b, then either b = 0 or |a| ≤ |b|.

Theorem 1.3. (Wilson’s theorem) Let p be a prime, then (p− 1)! ≡ −1 (mod p). For example, 7 | 6! + 1.

Theorem 1.4. (Fermat’s little theorem, FLT) Let p be a prime and let a be a positive integer coprime to p (we
write gcd(a, p) = 1 or (a, p) = 1), then ap−1 ≡ 1 (mod p) (or p | ap−1 − 1). Consequently, p | a(p−1)k − 1 for k ∈ N.

Definition 1.5. It’s easy to check that if (a, p) > 1, then there’s no k ∈ N with ak ≡ 1 (mod p). For (a, p) = 1,
we call k ∈ N the order of a modulo p and write k = ordp(a) if k is the least positive integer for which ak ≡ 1.

For example, ord37(10) = 3, ord13(2025) = ord13(10) = 6. By FLT, 1036 ≡ 1 (mod 37), 202512 ≡ 1 (mod 13).

Proposition 1.6. an ≡ 1 (mod p) ⇒ ordp(a) | n. In particular, for (a, p) = 1, ordp(a) | p− 1.

Definition 1.7. Let p be a prime and let n be a positive integer. We denote by vp(n) the largest k ∈ N for which
pk | n. In this case we also write pk||n or pk | n& pk+1 ̸| n. For example, v2(3072) = 10, v37(75!) = 2.

Exercise 1.1. Find in how many zeroes the number 150! ends by evaluating vp(150!) for some p | 10.

Exercise 1.2. Positive integers a, b satisfy the chain of divisibilities a | b2 | a3 | b4 | . . . . Show that a = b.

Theorem 1.8. (LTE lemma) For an odd prime p, assume p | x− y, p ̸| x, y. Then vp(x
n − yn) = vp(x− y)+ vp(n).

For example, p | x
p − yp

x− y
(if the stated conditions hold!). Lemma also covers vp(x

n + yn) and v2(x
n ± yn).

Exercise 1.3. (Estonia TST 2023) Let p ∈ P, x, y ∈ Z. Find x0yp−1 + x1yp−2 + · · ·+ xp−2y1 + xp−1y0 (mod p).

In addition to the theory above, one could extend FLT from the prime case p to any n ∈ N with the help of the
Euler function φ(n), obtaining Euler’s theorem. Other useful results include Chinese remainder theorem (CRT),
Bertrand’s postulate and many others. Below we shortly list the common arithmetic functions.

Definition 1.9. For a positive integer n, denote by d(n), σ(n) the count and the sum of the positive divisors of n,
respectively. Denote by φ(n) the count of positive integers a ≤ n with (a, n) = 1.

When n = pk for some k ∈ N, d(n) = k+1, σ(n) = 1+ · · ·+pk = pk+1−1
p−1 and φ(n) = pk−1(p−1) = pk ·

(
1− 1

p

)
.

Observation 1.10. d(n) is odd ⇔ n is a perfect square. If n and σ(n) are odd, then n is a perfect square. For
n ≥ 3, φ(n) is even.

Theorem 1.11. (Bézout’s lemma) Let a, b be positive integers and let d = (a, b) be their greatest common factor.
Then there exist integers x, y such that ax+ by = d.

Theorem 1.12. (Mihăilescu) The only solution of xa − yb = 1 for a, b > 1 and x, y > 0 is (x, a, y, b) = (3, 2, 2, 3).
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2 Problems

1. (APMO 1998) Show that there doesn’t exist positive integers a, b such that (36a+ b)(36b+ a) is a power of two.

Solution. Assume (36a+b)(36b+a) = 2n and d = (a, b), a = dx, b = dy, then (x, y) = 1 and d2(36x+y)(36y+x) =
2n. Then 36x+y, 36y+x are both powers of two, but if 2 | 36x+y, 36y+x, then 2 | x, y and (x, y) > 1, a contradiction.
Hence WLOG (without loss of generality) 36x+ y = 1 ≥ 37, a contradiction ■

2. Prove that σ(n− 1)σ(n)σ(n+ 1) is even for all n ≥ 2.

Solution. Assume that all three divisor sums are odd. If n is even, then n− 1, n+ 1 are odd perfect squares, i.e.
x2−y2 = 2, which is impossible. If n is odd, then it’s an odd square. Let n−1 = 2ix2, n+1 = 2jy2. Since there are
no consecutive perfect squares, i, j are odd. But 2ix2 + 2 = 2ky2, so 1 = 2k−1y2 − 2i−1x2, the same contradiction
■

3. Let a, b, n be positive integers with n ≥ 2. Show that σ(n)a = nb is not possible.

Solution. Assume it holds, then σ(n), n have the same set of divisors. Let n = pα1
1 . . . pαk

k , σ(n) = pβ1

1 . . . pβk

k .
Note that σ(n) > n, so a < b. Furthermore, for all i ∈ {1, . . . , k}, αib = βia, from where βi > αi i.e. βi ≥ αi + 1.

σ(n) =

k∏
i=1

pi
αi+1 − 1

pi − 1
≤

k∏
i=1

pi
βi − 1

pi − 1
=

k∏
i=1

(1 + · · ·+ pβi−1) <
k∏

i=1

pi
βi = σ(n),

which is a contradiction ■

4.

a) Prove that there exist 100 distinct positive integers a1, a2, . . . , a100 such that ai divides the total sum s =
a1 + a2 + · · ·+ a100 for each i = 1, . . . , 100.

b) Prove that there exist 99 distinct positive integers b1, . . . , b99 such that the sum of their cubes is a cube.

Solution. (a) We’ll prove the statement by induction. Note that numbers 1, 2, 3 satisfy this property, and whenever
numbers a1, . . . , ak satisfy the property (i.e. for each i = 1, . . . , k we have ai | sk = a1 + · · · + ak), we can
consider adding another number ak+1 = sk. Indeed, ak+1 | 2ak+1 = sk + ak+1 = sk+1 and for each i = 1, . . . , k,
ai | 2sk = sk + ak+1 = sk+1 (where sk+1 denotes a1 + · · · + ak+1). Hence ai | sk+1 holds for all i = 1, . . . , k + 1
and the property holds for k+ 1 numbers. The base k = 3 and the step k → k+ 1 of the induction hold, hence the
statement is also true for k = 100 ■

Note 1: Don’t forget to mention why ak+1 is distinct from a1, . . . , ak.
Note 2: The statement is obviously true for k = 1, but is false for k = 2: from a1, a2 | a1+a2 follows a1 | a2 | a1,

so a1 = a2, a contradiction.
Solution. (b) Note that 33 + 43 + 53 = 63. We’ll use this identity to solve the problem by induction over the odd
positive integers k. The base of k = 3 summands is clear. Assume that the cubes of distinct numbers a1, . . . , ak
sum to a cube s3k. Multiply the equality by 63, then

63s3k = 63a31 + · · ·+ 63a3k = 63a31 + 63a3k−1 + (33 + 43 + 53)a3k.

Hence we have a construction for k + 2:

(6sk)
3 = (6a1)

3 + · · ·+ (6ak−1)
3 + (3ak)

3 + (4ak)
3 + (5ak)

3

To ensure that the newly added terms are distinct from the rest ones, note that all three of them are smaller than
6ak. Consider ak, the number that is broken down into three, to be the smallest out of a1, . . . , ak. Easy to check
that this works. Now, both base k = 3 and the induction step k → k + 2 hold, hence the statement is also true for
k = 99 ■

Note 1. We can also start the induction from the trivial k = 1.
Note 2. The statement is not true for k = 2 by Fermat’s Last Theorem.

5. An integer larger than 1 is written on the board. Each move consists of substituting the number n on the board
with the number n+ n

p , where p is any prime divisor of n.

a) (Estonia,Ukraine 2021) Prove that as this process continues, 3 is chosen as p infinitely many times.
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b) (Swiss 2022) Now assume the prime p chosen at each step is the smallest possible. Prove that after a finite
number of moves a multiple of 32025 will appear.

Solution. (a) Let q be the largest prime divisor of n. Observe that any chosen prime divisor inductively satisfies
p ≤ max{q, n}, since n + n

p = np+1
p , so finitely many distinct primes could be chosen. By Infinite Pigeonhole

Principle, some prime is then chosen infinitely often. Assume r > 3 is the largest prime chosen infinitely often,
then, since with every choice of r, vr(n) decreases, it should also increase infinitely often, hence some larger prime
is chosen infinitely many times, contradicting the maximality of r. Therefore only 2 and 3 could be chosen infinitely
often, but not only 2. The conclusion follows ■
Solution. (b) Denote by an the number obtained on the n-th term (with an being the initial number). We’ll show
by induction that for each k ∈ N there exists m ∈ Z+ such that 3k | am. The base case is clear: if a1 is odd, then
a2 = a1 +

a1

p is even and a3 = a2 +
a2

2 = 3a2

2 , from where 3 | a3; if a1 is even, then a2 = 3a1

2 , from where 3 | a2.
Assume that 3k | am for k ≥ 1. If am is even, then am+1 = 3am

2 and 3k+1 | am+1. Now assume am is odd, then
am+1 = am + am

3 = 4am

3 . Then am+2 = 3am+1

2 = 2am and am+3 = 3am, from where 3k+1 | am+3. Now, both the
base k = 1 and the induction step k → k + 1 hold, hence the statement is true for k = 2025 ■

6. (IZhO 2020) Let p be a prime such that for any a, b ∈ N the number 2a3b + 1 is not divisible by p. Prove that
for any c, d ∈ N the number 2c + 3d is also not divisible by p.

Solution. We’ll solve the problem for general n, using Euler’s theorem (note that for a prime p, φ(p) = p − 1).
Assume that n | 2c + 3d, then (n, 2) = (n, 3) = 1. Hence 2φ(n) ≡ 3φ(n) ≡ 1 (mod n). Let a be a sufficiently large
integer such that xφ(n) > c, then

0 ≡ 2c + 3d ≡ 2c + 3d2xφ(n) ≡ 2xφ(n)−c3d + 1 (mod n),

so a = xφ(n)− c and b = d work, a contradiction ■

7.

a) Prove that if n | 2n − 1, then n = 1. Hint: use ordm(2)

b) Let k ≥ 2 and let n1, . . . , nk be positive integers such that n1 | 2n2 − 1, n2 | 2n3 − 1, . . . , nk | 2n1 − 1. Prove
that n1 = n2 = · · · = nk = 1.

Solution. (a) Assume that n > 1 and let p | n. Then p ̸= 2 (so (p, 2) = 1) and 2n ≡ 1 (mod p). It follows that
ordp(2) | n. By FLT, 2p−1 ≡ 1 (mod p), hence also ordp(2) | p − 1. It follows that ordp(2) | (n, p − 1), whereas
(n, p− 1) ≤ min{n, p− 1}. If ordp(2) = 1, then p | 21 − 1 = 1, which is not possible. Hence ordp(2) > 1 and there
exists a prime q dividing ordp(2). Then q | n and q | p − 1, so q ≤ p − 1 < p. We see that from a prime divisor of
n we obtained a smaller prime divisor of n. Assuming that p is the smallest prime divisor of n, q < p should not
exist, which gives a contradiction. Hence n = 1 ■
Solution. (b) Denote M := lcm(n1, . . . , nk) (least common multiple). Then for all i = 1, . . . , k ni | M and
2ni − 1 | 2M − 1 (show that a | b ⇒ 2a − 1 | 2b − 1). Consequently, for all i ∈ {1, . . . , k} ni | 2M − 1, hence
M | 2M − 1. It follows by part a) that M = 1, so ni | 1 for all i = 1, . . . , k, yielding n1 = · · · = nk = 1 ■

8.

a) Let n > 1 be an integer. Prove that for each d | n! with d ̸= n! there exists d′ | n! such that d+ d′ | n!.

b) (IOM 2018) Let 1 = d0 < d1 < · · · < dm = 4n be all positive divisors of 4n, where n is a positive integer.
Prove that there exists i ∈ {1, . . . ,m} such that di − di−1 = 2.

Solution. (a) We’ll prove the statement by induction on n. The base case is clear: if n = 2, then 1 | 2!, 1+1 = 2 | 2!.
Assume the statement works for n = m and consider n = m+ 1. Consider d | (m+ 1)!. If d | m!, then we are done
by induction hypothesis. Otherwise (d,m+ 1) > 1. Let d = ab, where a | m! and (b,m!) = 1. Then b | m+ 1. By
induction hypothesis, there exists a′ | m! such that a+ a′ | m!. Then a′b | m!(m+ 1) = (m+ 1)!, and, analogously,
d + a′b = (a + a′)b | (m + 1)!. Hence choosing d′ = a′b works. Since the base and the induction step n → n + 1
hold, the statement is true for all n > 1 ■
Solution. (b) Assume the statement is false. Let d be the largest even integer with d, d + 2 | n (d ≥ 2), then
d + 1 | n. Consider 2d, 2d + 2, 2d + 4, it’s easy to show that either the first two or the last two are also divisors,
contradicting the maximality of d. Hence the statement is true ■

9. (Peru 2009) Let a, b, c be positive integers with gcd(a, b, c) = 1. Prove that there exists n ∈ N such that
ak + bk + ck is not divisible by 2n for all k ∈ N.
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Solution. Note that at least one of a, b, c is odd. If one or all are odd, then the sum sk := ak + bk + ck is odd
for any k, hence taking n = 1 works. Next, WLOG consider that a, b are odd and c is even. If k is even, then
ak + bk ≡ 2 (mod 4) and v2(a

k + bk) = 1 (meaning 21 | ak + bk, but 22 ̸| ak + bk), so for all even k 4 | ck and 4 ̸| sk.
If k is odd, then ak + bk = (a+ b)(ak−1 − ak−2b+ · · · − abk−2 + bk−1). Note that

ak + bk

a+ b
= ak−1 − ak−2b+ · · · − abk−2 + bk−1 ≡ 1k−1 + · · ·+ 1k−1︸ ︷︷ ︸

k times

≡ k ≡ 1 (mod 2).

Therefore v2(a
k + bk) = v2(a+ b). Denote x := v2(a+ b). Note that if k > x, then 2x+1 | ck, but 2x+1 ̸| ak + bk, so

2x+1 ̸| sk. We aim to choose n such that

1. n ≥ 2 (to satisfy 2n ̸| sk for even k);

2. n ≥ x+ 1 (to satisfy 2n ̸| sk for all odd k > x);

3. 2n does not divide any sk for k ≤ x and k odd.

Denote yk := v2(a
k + bk + ck) for k = 1, . . . , x, and let y = max{y1, . . . , yx}. Then choosing n = max{x, y} + 1

works ■
Note: We could only consider yk for k ≤ x and k odd.

10. (IZhO 2021) Prove that there exists a positive integer n, such that the remainder of 3n when divided by 2n is
greater than 102025.

Solution. We’ll solve the problem for general A ∈ N (in this problem A = 102025). Let 3n = 2nqn + rn, where
0 < rn < 2n is the remainder. Assume the statement is false, then rn < A for all n ∈ N. Let N be a sufficiently
large integer such that 2N > A. Consider all integers n ≥ N + 2 and let m ≥ N + 2 be the one with the maximum
possible value of rm, i.e. for all n ≥ N , rn ≤ rm < A. Then 3m ≡ rm (mod 2m). Note that if 2m | 3m − rm, then

2m | 3(3m − rm) = 3m+1 − 3rm and 2m | 3m+1 − 3rm − 2m. Since one of the two consecutive integers
3m+1 − 3rm

2m

and
3m+1 − 3rm

2m
− 1 =

3m+1 − 3rm − 2m

2m
is even, either 2m+1 | 3m+1 − 3rm or 2m+1 | 3m+1 − 3rm − 2m. Then

3m+1 ≡ 3rm (mod 2m+1) or 3m+1 ≡ 3rm + 2m (mod 2m+1).
Note that 3m+1 ≡ rm+1 (mod 2m+1) and rm+1 is the unique integer 0 < rm+1 < 2m+1 with this property. Since

3rm + 2m < 3A+ 2m < 3 · 2N + 2m < 4 · 2N + 2m = 2N+2 + 2m ≤ 2m + 2m = 2m+1,

we have 0 < 3rm < 2m+1 and 0 < 3rm + 2m < 2m+1. Then rm+1 = 3rm > rm or rm+1 = 3rm + 2m > rm. In both
cases we construct rm+1 with the value greater than rm, contradicting the maximality of rm. Hence the statement
is true ■

Note: Two related problems:

1. (China TST 2009) Let a > b > 1, b is an odd number, let n be a positive integer. If bn|an − 1, then ab > 3n

n .

2. (RMM 2024) Fix integers a and b greater than 1. For any positive integer n, let rn be the (non-negative)
remainder that bn leaves upon division by an. Assume there exists a positive integer N such that rn < 2n

n for
all integers n ≥ N . Prove that a divides b.

11. (ARO 2018) For n ≥ 3. denote by sn the sum of all primes less than n. Prove that there exists a number
m > 102025 such that (sm,m) = 1.

Solution. Assume that the statement is false, then there exists N such that for all n ≥ N (sn, n) = 1. Denote
by pk the k-th prime number. Then pn | spn , let spn = pn · k, then pn+1 | spn+1 = spn + pn = (k + 1)pn. Since
(pn, pn+1) = 1, pn+1 | k + 1. Then

pnpn+1 ≤ (k + 1)pn = spn+1
=

n∑
k=1

pi < npn,

from where pn+1 < n, a contradiction ■

12. Let n ≥ 2 and let a1, . . . , an be distinct integers.

a) (Ukraine 2023) Call a pair (ai, aj) elegant if the sum ai+aj is a power of 2. Find the largest possible number
of elegant pairs.
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b) (EMC 2024) Call a pair (ai, aj) binary if aiaj + 1 is a power of 2. Find the largest possible number of binary
pairs.

Solution. (a) It’s easy to construct n distinct integers forming n − 1 elegant pairs. Let’s prove more pairs is not
possible. Consider a graph G on n vertices a1, . . . , an and draw an edge between ai and aj whenever (ai, aj) (or
(aj , ai)) is an elegant pair.

It’s well-known that a simple (i.e. having no double edges and loops) cycle-free graph on n vertices has at most
n− 1 edges. Assume that at least n elegant pairs are possible, then the corresponding graph G has at least n edges
and hence contains a cycle. Let (b1, b2), . . . , (bk−1, bk), (bk, b1) all be elegant pairs for k ≥ 3, and let bi + bi+1 = 2ci .
WLOG assume b1 has the greatest value among b1, . . . , bk and 2m ≤ b1 < 2m+1. Then

2c1 = bk + b1 ≤ 2b1 < 2m+2, 2c1 = bk + b1 > b1 = 2m,

hence we must have ck = m + 1. Analogously we obtain 2m < b1 + b2 < 2m+2, hence c1 = m + 1. Therefore
bk + b1 = b1 + b2 and bk = b2, contradicting that the numbers must be distinct.

Therefore n− 1 is indeed the maximal possible number of elegant pairs.
Solution. (b) As in a), it’s easy to construct n distinct integers forming n − 1 binary pairs and we’ll show that
more pairs is not possible. Consider a graph G on n vertices a1, . . . , an and draw an edge between ai and aj
whenever (ai, aj) (or (aj , ai)) is a binary pair. Assume that there are at least n binary pairs, then this graph has
at least n edges and hence contains a cycle. Let (b1, b2), . . . , (bk−1, bk), (bk, b1) all be binary pairs for k ≥ 3 and let
bibi+1 + 1 = 2ci .

WLOG assume b1 has the greatest value among b1, . . . , bk and WLOG b2 ≥ bk. Then 2ck = bkb1+1 ≤ b1b2+1 =
2c1 , so ck ≤ c1 and bkb1 +1 | b1b2 +1. Then bkb1 +1 | (b1b2 +1)− (bkb1 +1) = b1(b2 − bk). Since (b1, bkb1 +1) = 1,
it follows that bkb1 + 1 | b2 − bk. Since b2 ̸= bk, we must have b2 > bk and

0 < b2 − bk < b2 < b1 < bkb1 + 1,

which is a contradiction.
Therefore n− 1 is indeed the maximal possible number of elegant pairs.
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